medpy.metric.histogram.chebyshev_neg#
- medpy.metric.histogram.chebyshev_neg(h1, h2)[source]#
Chebyshev negative distance.
Also Tchebychev distance, Minimum or \(L_{-\infty}\) metric; equal to Minowski distance with \(p=-\infty\). For the case of \(p=+\infty\), use
chebyshev
.The Chebyshev distance between two histograms \(H\) and \(H'\) of size \(m\) is defined as:
\[d_{-\infty}(H, H') = \min_{m=1}^M|H_m-H'_m|\]Attributes:
semimetric (triangle equation satisfied?)
Attributes for normalized histograms:
\(d(H, H')\in[0, 1]\)
\(d(H, H) = 0\)
\(d(H, H') = d(H', H)\)
Attributes for not-normalized histograms:
\(d(H, H')\in[0, \infty)\)
\(d(H, H) = 0\)
\(d(H, H') = d(H', H)\)
Attributes for not-equal histograms:
not applicable
- Parameters:
- h1sequence
The first histogram.
- h2sequence
The second histogram.
- Returns:
- chebyshev_negfloat
Chebyshev negative distance.