medpy.metric.histogram.chebyshev_neg#

medpy.metric.histogram.chebyshev_neg(h1, h2)[source]#

Chebyshev negative distance.

Also Tchebychev distance, Minimum or \(L_{-\infty}\) metric; equal to Minowski distance with \(p=-\infty\). For the case of \(p=+\infty\), use chebyshev.

The Chebyshev distance between two histograms \(H\) and \(H'\) of size \(m\) is defined as:

\[d_{-\infty}(H, H') = \min_{m=1}^M|H_m-H'_m|\]

Attributes:

  • semimetric (triangle equation satisfied?)

Attributes for normalized histograms:

  • \(d(H, H')\in[0, 1]\)

  • \(d(H, H) = 0\)

  • \(d(H, H') = d(H', H)\)

Attributes for not-normalized histograms:

  • \(d(H, H')\in[0, \infty)\)

  • \(d(H, H) = 0\)

  • \(d(H, H') = d(H', H)\)

Attributes for not-equal histograms:

  • not applicable

Parameters:
h1sequence

The first histogram.

h2sequence

The second histogram.

Returns:
chebyshev_negfloat

Chebyshev negative distance.

See also

minowski, chebyshev