medpy.metric.histogram.chebyshev#
- medpy.metric.histogram.chebyshev(h1, h2)[source]#
Chebyshev distance.
Also Tchebychev distance, Maximum or \(L_{\infty}\) metric; equal to Minowski distance with \(p=+\infty\). For the case of \(p=-\infty\), use
chebyshev_neg
.The Chebyshev distance between two histograms \(H\) and \(H'\) of size \(m\) is defined as:
\[d_{\infty}(H, H') = \max_{m=1}^M|H_m-H'_m|\]Attributes:
semimetric (triangle equation satisfied?)
Attributes for normalized histograms:
\(d(H, H')\in[0, 1]\)
\(d(H, H) = 0\)
\(d(H, H') = d(H', H)\)
Attributes for not-normalized histograms:
\(d(H, H')\in[0, \infty)\)
\(d(H, H) = 0\)
\(d(H, H') = d(H', H)\)
Attributes for not-equal histograms:
not applicable
- Parameters:
- h1sequence
The first histogram.
- h2sequence
The second histogram.
- Returns:
- chebyshevfloat
Chebyshev distance.
See also