Image filter and manipulation (medpy.filter)#

This package contains various image filters and image manipulation functions.

Smoothing medpy.filter.smoothing#

Image smoothing / noise reduction in grayscale images.

anisotropic_diffusion(img[, niter, kappa, ...])

Edge-preserving, XD Anisotropic diffusion.

gauss_xminus1d(img, sigma[, dim])

Applies a X-1D gauss to a copy of a XD image, slicing it along dim.

Binary medpy.filter.binary#

Binary image manipulation.

size_threshold(img, thr[, comp, structure])

Removes binary objects from an image identified by a size threshold.

largest_connected_component(img[, structure])

Select the largest connected binary component in an image.

bounding_box(img)

Return the bounding box incorporating all non-zero values in the image.

Image medpy.filter.image#

Grayscale image manipulation.

sls(minuend, subtrahend[, metric, noise, ...])

Computes the signed local similarity between two images.

ssd(minuend, subtrahend[, normalized, ...])

Computes the sum of squared difference (SSD) between patches of minuend and subtrahend.

average_filter(input[, size, footprint, ...])

Calculates a multi-dimensional average filter.

sum_filter(input[, size, footprint, output, ...])

Calculates a multi-dimensional sum filter.

local_minima(img[, min_distance])

Returns all local minima from an image.

otsu(img[, bins])

Otsu's method to find the optimal threshold separating an image into fore- and background.

resample(img, hdr, target_spacing[, ...])

Re-sample an image to a new voxel-spacing.

Label medpy.filter.label#

Label map manipulation.

relabel_map(label_image, mapping[, key])

Relabel an image using the supplied mapping.

relabel(label_image[, start])

Relabel the regions of a label image.

relabel_non_zero(label_image[, start])

Relabel the regions of a label image.

fit_labels_to_mask(label_image, mask)

Reduces a label images by overlaying it with a binary mask and assign the labels either to the mask or to the background.

Noise medpy.filter.noise#

Global and local noise estimation in grayscale images.

immerkaer(input[, mode, cval])

Estimate the global noise.

immerkaer_local(input, size[, output, mode, ...])

Estimate the local noise.

separable_convolution(input, weights[, ...])

Calculate a n-dimensional convolution of a separable kernel to a n-dimensional input.

Utilities medpy.filter.utilities#

Utilities to apply filters selectively and create your own ones.

xminus1d(img, fun, dim, *args, **kwargs)

Applies the function fun along all X-1D dimensional volumes of the images img dimension dim.

intersection(i1, h1, i2, h2)

Returns the intersecting parts of two images in real world coordinates.

pad(input[, size, footprint, output, mode, cval])

Returns a copy of the input, padded by the supplied structuring element.

Hough transform medpy.filter.houghtransform#

The hough transform shape detection algorithm.

ght(img, template)

Implementation of the general hough transform for all dimensions.

ght_alternative(img, template, indices)

Alternative implementation of the general hough transform, which uses iteration over indices rather than broadcasting rules like ght.

template_ellipsoid(shape)

Returns an ellipsoid binary structure of a of the supplied radius that can be used as template input to the generalized hough transform.

template_sphere(radius, dimensions)

Returns a spherical binary structure of a of the supplied radius that can be used as template input to the generalized hough transform.

Intensity range standardization medpy.filter.IntensityRangeStandardization#

A learning method to align the intensity ranges of images.

IntensityRangeStandardization([cutoffp, ...])

Class to standardize intensity ranges between a number of images.