medpy.filter.noise.separable_convolution#
- medpy.filter.noise.separable_convolution(input, weights, output=None, mode='reflect', cval=0.0, origin=0)[source]#
Calculate a n-dimensional convolution of a separable kernel to a n-dimensional input.
Achieved by calling convolution1d along the first axis, obtaining an intermediate image, on which the next convolution1d along the second axis is called and so on.
- Parameters:
- inputarray_like
Array of which to estimate the noise.
- weightsndarray
One-dimensional sequence of numbers.
- outputarray, optional
The output parameter passes an array in which to store the filter output.
- mode{‘reflect’, ‘constant’, ‘nearest’, ‘mirror’, ‘wrap’}, optional
The mode parameter determines how the array borders are handled, where cval is the value when mode is equal to ‘constant’. Default is ‘reflect’
- cvalscalar, optional
Value to fill past edges of input if mode is ‘constant’. Default is 0.0
- originscalar, optional
The origin parameter controls the placement of the filter. Default 0.0.
- Returns:
- outputndarray
Input image convolved with the supplied kernel.